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Introduction

1. Introduction

Malaria is a potential life threatening parasitic disease spread in tropical and subtropical regions
which include Sub-Saharan Africa, Asia, and Latin America. The term malaria originates from the
Italian word: mala aria- bad air.? It is caused by protozoan parasites known as Plasmodium vivax
(P. vivax), Plasmodium falciparum (P. falciparum), Plasmodium malariae (P. malariae),
Plasmodium ovale (P. ovale) and Plasmodium knowlesi (P. knowlesi). It is transmitted by the
infective bite of female Anopheles mosquito. Human malaria caused by parasites P. falciparum
and P. vivax are reported from India. Infection with P. falciparum is most deadly for humans.?
According to the latest World malaria report, released in December 2019, there were 228 million
cases of malaria in 2018 compared to 231 million cases in 2017.2 A French army doctor Charles
Louis Alphonse Laveran discovered parasites in the blood of a malaria infected person for the first

time, for which he was awarded the Nobel Prize in 1907.*

1.1 Life cycle of parasite

The human malaria parasite has a complex life cycle as shown in Figure 1. The life cycle of malaria

parasite involves two hosts viz. human and mosquito.

1. The malaria infection in human begins when the mosquito bites the skin and the motile
infectious form, Plasmodium sporozoite, is passed to a blood vessel from which it feed. When
sporozoites invade blood vessels, half of them remain in the skin for up to seven hours and,
surprisingly, that between 15% and 20% of the sporozoites enter the lymphatic system, causing
enlargement of the draining lymph node.

2. Within 30-60 min of inoculation, the thread-like sporozoites which entered the blood stream
are carried to the liver hepatocytes through Kupffer cells. Kupffer cell is the liver’s main line
of defense against foreign bodies, it is exceedingly surprising that this resident macrophage is
unable to eliminate the sporozoite.

3. Over a period of 7-12 days, the sporozoites grow into schizonts and can develop up to 30,000
merozoites, which rupture the hepatocytes and release into blood stream. Up to this stage is
called pre-erythrocytic stage. On the other hand, some vivax and ovale sporozoites turn into
hypnozoites, a form that can remain latent in the liver for months or years and cause relapses

in infected people as a dormant stage.*

School of Chemical Sciences, MG University, Kottayam 1
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Figure 1: Life cycle of malaria parasite.

4. Then, the asexual cycle begins with the merozoites invading RBC to grow by consuming

6.
7.

hemoglobin. Within the host RBC, the parasite undergoes development from the early ring
stage to late trophozoite and then after mitotic divisions to the schizont stage, which contains
6 to 32 merozoites, depending on the parasite species. When the erythrocytic schizont ruptures,
the released merozoites continue the life cycle by invading other RBCs. This stage called
asexual erythrocytic stage and parasite at this stage shows clinical symptoms leading to illness
and complications of malaria.

During this repeated cycle, some merozoites differentiate into male and female sexual forms
known as erythrocytic gametocytes with one nucleus and then awaiting the arrival of a blood-
seeking female Anopheles mosquito.

Then intake of gametocytes by the mosquito occurs through a blood meal.

Next is gametogenesis, the flagellated forms of microgametes, formed by exflagellation,

penetrate or fertilize the macrogametes generate zygotes.
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8. The zygotes change into ookinetes and then become a round oocyst. Inside the oocyst, the
nucleus divides repeatedly, with the formation of a large number of sporozoites and
enlargement of the oocyst.

9. When the sporozoites are fully formed, the oocyst bursts, releasing the sporozoites into the
haemocoel (the mosquito’s body cavity). The sporozoites migrate to the salivary glands, thus
completing the life cycle.

Entrance of the sporozoites from the mosquito’s salivary glands into a new human host perpetuates

the malaria life cycle.

1.2 Clinical symptoms

The first symptoms of malaria are nonspecific and similar to those of a minor systemic viral ilIness.
They comprise headache, lassitude, fatigue, abdominal discomfort and muscle and joint aches,
usually followed by fever, chills, perspiration, anorexia, vomiting and worsening malaise. In young

children, malaria may also present with lethargy, poor feeding and cough.®

At this early stage of disease progression, with no evidence of vital organ dysfunction, a rapid, full
recovery is expected, provided prompt, effective antimalarial treatment is given. If ineffective or
poor-quality medicines are given or if treatment is delayed, particularly in P. falciparum malaria,
the parasite burden often continues to increase and the patient may develop potentially lethal severe

malaria. Disease progression to severe malaria may take days but can occur within a few hours.

Malaria infection during pregnancy caused severe maternal complications like abortion (9.7%),
premature labour (59.6%), and still-births (5.7%), which were higher in P. falciparum infection.
Microcytic anaemia combined with dimorphic anaemia was predominant in the infected group
(89.5%).5

Severe malaria usually manifests with one or more of the following: coma (cerebral malaria),
metabolic acidosis, severe anaemia, hypoglycaemia, acute renal failure or acute pulmonary

oedema. If left untreated, severe malaria is fatal in the majority of cases.

1.3 Diagnosis of malaria
Prompt diagnosis and accurate treatment is critical to the effective management of malaria. Delays
in diagnosis and treatment are leading causes of death in many countries. Malaria diagnosis

involves identifying malaria parasites or antigens/products in patient blood.
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The diagnostic efficacy is subject to many factors. The different forms of the 5 malaria species;
the different stages of erythrocytic schizogony, the endemicity of different species, the
interrelation between levels of transmission, population movement, immunity, and signs and
symptoms; drug resistance, the problems of recurrent malaria, persisting viable or non-viable
parasitemia, and sequestration of the parasites in the deeper tissues, and the use of
chemoprophylaxis or even presumptive treatment on the basis of clinical diagnosis, can all
influence the identification and interpretation of malaria parasitemia in a diagnostic test. Diagnosis

of malaria can be classified broadly into clinical and parasitological diagnosis.’

» Clinical diagnosis is based on the patient’s symptoms and on signs at physical examination.
There is no combination of signs or symptoms that reliably distinguishes malaria from other
causes of fever; diagnosis based only on clinical features has very low specificity and results
in overtreatment.

» Parasitological diagnosis methods are;

1) Light microscopy

2) Rapid Diagnostic Tests (RDTSs)

3) Polymerase Chain Reaction techniques(PCRs)
4) Serology test

Detection of the parasites on giemsa-stained peripheral blood smears by light microscopy is used
as the gold standard for diagnosis of malaria. As knowlesi and malariae have almost similar
morphology, microscopy alone is insufficient to diagnose knowlesi. In case of vivax, ovale, and
malariae, all development stages subsequent to the liver cycle can be seen in the peripheral blood.
However, in falciparum, only ring forms and banana-like gametocytes are usually present in the

peripheral blood since mature parasites become sequestered.

In areas where microscopy is not readily available, RDTs can be used and are based on the
detection of antigens or enzymatic activities associated with the parasites. The most common
antigens for RDTs are P. falciparum histidine-rich protein-2(PfHRP2), specific for falciparum
malaria, and two enzymes of the parasite glycolytic pathways, namely plasmodial lactate
dehydrogenase (pLDH) and aldolase. RDTs can also measure parasite antigens when mature

parasites are sequestered.
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PCR-based methods are the most sensitive test able to identify low levels of parasitemia, parasite
species, or mixed infections, but not a suitable method for routine use. A species-specific loop
mediated isothermal amplification (LAMP) method has become widely accepted for identifying
knowlesi infections. Besides, PCR is helpful as are search tool in epidemiological studies, clinical

trials, and for detection of molecular markers of drug resistance to antimalarial agents.

Serology test is based on detection of antibodies against malarial parasites, using either indirect
immune fluorescence (IFA) or enzyme-linked immunosorbent assay (ELISA). Serology does not

detect current infection but rather measures past exposure.®

1.4 Preventive and control measures
v" Vector control: use of insecticide-treated bed nets (ITNs) and indoor spraying of residual
insecticides (IRSs) in which pyrethroids, organochlorines (e.g., DDT), organophosphates,
and carbamates are used as insecticide. Attractive toxic sugar bait (ATSB) methods.
v Use of chemicals for individual bite protection.
v Vaccines

v Environmental control- reduction of mosquito breeding sites.

1.4.1 Vaccines

The emergence and spread of drug and insecticide resistance has been limiting the current malaria

control measures. People living in endemic areas develop clinical protective immunity despite the

morphological changes and antigenic variations during the parasite life cycle allows them to escape
the protective immune responses of the host. Thus safe and effective vaccine is required to achieve
the world malaria eradication.

So far, three types of vaccine candidates have been intensively investigated:

1. Pre-erythrocytic vaccines to prevent blood-stage infection: Some vaccines of pre-
erythrocytic group are RTS, S/ASO1 in phase IV clinical trial, falciparum sporozoite
vaccine(PfSPZ) in phase Il trials, vivax malaria protein 1 (VMP001/AS01B) cell-traversal
protein for ookinetes and sporozoites (CelTOS) [FMP012/ GLA-SE or AS01] under phase I/11
a clinical trial, genetically attenuated parasite (GAP) vaccines and chemoprophylaxis

vaccination (CVac) in Phase | clinical trial. Using in vitro studies, falciparum liver-stage
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antigens (PfLSA-1, 2 & 3) and vivax liver-stage antigens (PvLSAS) are recognized as a novel
candidate vaccine targeting infected hepatocytes.

2. Blood-stage vaccines to clear parasitaemia and prevent clinical disease: Candidates for
erythrocyte-stage vaccine are AMAL, erythrocyte binding antigen (EBA-175), MSP-1, MSP-
119, MSP-2, MSP-3, and serine repeat antigen 5 (SERAS).

3. Transmission-blocking vaccines to prevent infection of mosquitoes and interrupt malaria
transmission in populations: Transmission-blocking vaccines (TBVs) target surface proteins
expressed on gametocytes, zygotes, and ookinetes to prevent parasite development in the
mosquito mid gut. This group include the gametocyte antigens (Pfs48/45andPfs230),
falciparum ookinete surface antigens (Pfs25 and Pfs28), and their vivax homologues (Pvs25
and Pvs28).*

1.5 Treatment of malaria

Malaria can lead to fatal outcomes within few days, thus treatment should be started as soon as
possible.

1.5.1 Traditional medicine

More than 1,200 plants that possess antimalarial activities are reported worldwide. A fifth of
patients use traditional herbal remedies in endemic countries. Quinine, extracted from the bark of
cinchona tree (Cinchona officinalis) was most effective.® Ampelozyziphus amazonicus,
Strychnopsis thouarsii, Phytolacca dodecandra, Justicia, Vernonia amygdalina, Buddleja
Polystachya, Strychnos mitis, Aloe trichosantha, Cadaba rotundifolia, Adhatoda schimperiana,

Piper capense and Gardenia ternifolia were commonly used in endemic areas.

1.5.2 Conventional medicine
The main targets of current antimalarial drugs are asexual blood stages of the parasite, responsible
for the malarial symptoms. Nowadays, the available antimalarials can be grouped into five classes

according to their chemical structure and biological activity.

1.5.3 Classification of antimalarial drugs
Antimalarials are classified on the basis of their molecular structure and biological activity and are

discussed as under:
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1.5.3.1 Based on chemical structure:

v

<

v

Quinoline based antimalarials: 4-aminoquinolines (chloroquine, amodiaquine, and
piperaquine) and 8-aminoquinolines (primaquine and tafenoquine).

Aryl amino alcohols—quinine, mefloquine, halofantrine, and lumefantrine.

Antifolate compounds (pyrimethamine, proguanil, dapsone, and sulfadoxine).

Artemisinin and its derivatives: first generation (dihdyroartemisinin, artesunate, arteether, and
artemether) and second generation (artemisone).

Hydroxynapthoquinone-atovaquone.*®

1.5.3.2 Based on biological activity:

v

v

Tissue schizonticidal agent: Primaquine is effective against the hypnozoites of vivax and ovale
malaria. Proguanil is a biguanide compound that is active against all stages of Plasmodium.

Blood schizonticidal agent: Chloroquine is a blood schizonticidal agent and the drug of choice
for all malarial parasites except for chloroquine resistant Plasmodium strains. Primaquine can
kill gametocytes and consequently block the malaria transmission. Quinine kills large ring and
tropozoite asexual parasites and is gametocidal against vivax, ovale and malariae but not
falciparum malaria. Mefloquine is also a blood schizonticide, active against the erythrocytic
stages of all malaria parasites. Artemisinin (endoperoxide sesquiterpene lactone) is a potent

and fast acting blood schizonticidal killing all parasite stages.
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Figure 2: Synthetic and natural antimalarial drugs used as models.
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1.6 Antimalarial drug resistance

According to WHO Antimalarial drug resistance has been defined as the “ability of a parasite strain
to survive and/or multiply despite the administration and absorption of a drug given in doses equal
to or higher than those usually recommended but within tolerance of the subject”. This definition
was later modified to specify that the drug in question must “gain access to the parasite or the

infected red blood cell for the duration of the time necessary for its normal action”.

Genetic, molecular and pharmacological approaches have shown that different targets of older
drugs are resistant due to spontaneous mutations or gene duplication on their key enzymes or
transporters. For example, chloroquine resistance is caused by mutation of Pfmdrl and Pfcrt.
Atovaquone resistance is caused by mutation of cytochrome b gene. Point mutation of
dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) are responsible for
resistance to antifolates.'* The most potent and safe anti-malarial drug, artemisinin and their
derivatives are also non-effective to P. falciparum due to point mutation in P. falciparum kelch-

like protein which is a primary marker those drugs.*?

Many antimalarial drugs in current usage are chemically close related and development of
resistance to one can facilitate development of resistance to others. Chloroquine and amodiaquine
are both 4-aminoquinolines and they got cross-resistance. Development of resistance to
mefloquine also lead to resistance to halofantrine and quinine. Resistance to antifolate combination
drugs like sulfadoxine/ pyrimethamine may lead to increased parasitological resistance to other
antifolate combination drugs. Development of high levels of SP resistance through continued
accumulation of DHFR mutations may cause resistance against newer antifolate combination
drugs such as chlorproguanil/dapsone (LapDap) even before they are brought into use. The
incomplete cure due to non-adherence to antimalarial drugs by the patients also resulted in

appearance of drug-resistant mutant.

1.6.1 Prevention of drug resistance

Although effective antimalarials are currently available the potential emergence of resistance to
those drugs is a great problem in malaria treatment and eradication. Resistance is developed even
against artemisinin and its derivatives, which are the most effective drugs available today.

Artemisinins comprise the only known drug class that works effectively against multidrug resistant
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parasites. Therefore, a strategy of combination of antimalarial drugs called “Combination
Therapies” is established for delaying the emergence of multidrug-resistant Plasmodium
falciparum. Use of combination therapy has been linked to slowing of the development of
mefloquine resistance and reductions in overall malaria transmission rates in some parts of
Thailand and has been recommended for widespread use in sub Saharan Africa.'®> Combination

therapy include non-artemisinin combinations and artemisinin-based combinations:

1.6.1.1 Non-artemisinin-based combinations

v" Chloroquine-Sulfadoxine -Pyrimethamine(CQ+SP)

v" Amodiaquine-Sulfadoxine -Pyrimethamine (AQ+SP)

v" Chloroproguanil-Dapsone (LAPDAP)

v Atovaquone-Proguanil (Malarone) is for treatment of uncomplicated malaria in travelers
outside malaria-endemic areas.

v Quinine-clindamycin is for uncomplicated malaria treatment in the first trimester of
pregnancy.®

v Mefloquine-Sulfadoxine/pyrimethamine (Fansimef)

1.6.1.2 Artemisinin-based combination therapy(ACTS)
The treatment of uncomplicated malaria caused by falciparum parasite or by chloroquine-
resistant vivax, ovale, malariae, and knowlesi using a combination of fast acting artemisinin-
based compounds with a drug from a different class are called ACTs. Artemisinin drugs are
highly efficacious, rapidly active, and have action against a broader range of parasite
developmental stages. Artemisinin is commercially produced by extract from sweet wormwood
(Artemisia annua).!* This action apparently yields two notable results. First, artemisinin
compounds, used in combination with a longer acting antimalarial, can rapidly reduce parasite
densities to very low levels at a time when drug levels of the longer acting antimalarial drug are
still maximal. Second, the use of artemisinins has been shown to reduce gametocytogenesis by
8- to 18-fold. This reduces the likelihood that gametocytes carrying resistance genes are passed
onwards and potentially may reduce malaria transmission rates. ACT combinations are:

v’ artemether-lumefantrine (AM+LM) (Coartem) is suggested as the first-line drug for

uncomplicated falciparum malaria.®

v’ artesunate-amodiaquine (AS-AQ)
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artesunate-sulphadoxine-pyrimethamine (AS-SP)
artesunate-mefloquine (AS-MQ)
dihydroartemisinin-piperaquine (DH-PP), (Eurartesim)
artesunate-chlorproguanil-dapsone (AS-CD)

artesunate-pyronaridine

AN N N N NN

artesunate-atovaquone-proguanil.

OH
Artemisinin  Dihydroartemisinin Artemether Artesunate

Figure 3: Artemisinin derivatives.

Any benefits of combination therapy in preventing development or intensification of resistance
may be lost due to unofficial and incorrect use of the component drugs outside of official health
services.'® In the future, antimalarial therapy may be expanded by combining chemotherapy with

vaccines (or other drugs) specifically designed to inhibit transmission of malaria.

1.7 New targets in malaria parasite chemotherapy

Identification of novel drug targets in the parasite and design of new chemical compounds acting
on new targets is nowadays widely used approach all over the world to combat issue raised by
emergence of resistance to existing drugs. New antimalarial targets are the prime need for the
discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches

are focusing on promising targets in order to develop new drug candidates.

Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium
falciparum can play an indispensable role in the identification of these targets. An overview of the

different drug targets for malaria is shown in Figure 4.
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Figure 4: Antimalarial targets in plasmodium parasite and candidate drugs.

1.7.1 Food vacuole of malaria parasite as drug target

Food vacuole of malaria parasite is responsible for the degradation of 60—-80% of the host red cell
hemoglobin, providing a pool of amino acids required for its growth and development. This
pathway is initiated by a series of proteases which digest hemoglobin into small peptides. So,
inhibiting these proteases will stop this peptide synthesis through which parasite development can

be stopped, thus, protease enzymes are a good target (Figure 5).

It has also been studied that digestion of hemoglobin release peptides which are transported to
cytoplasm, where further proteolytic cleavage leads to the production of free amino acids.
Therefore, a transporter that exports the peptides for terminal degradation to amino acids in the
cytoplasm must exist. Inhibition of this transporter system could be a valid target to develop
antimalarial agents.!” Food vacuole nutrition of the malaria parasite can be checked by the

following two ways:
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a) Targeting protease enzymes

Hemoglobin hydrolysis in the Plasmodium digestive vacuole is thought to be a semi-ordered
process mediated by the action of a series of proteases like plasmepsins (aspartic proteases)
and falcipains (cysteine proteases). Cysteine protease inhibitors such as E64, leupeptin,
chymostatin, fluoromethyl ketones, vinyl sulfones, and chalcones which have potency to
protect plasmodium-infected mice against lethal malaria appear to be a valuable template for
the development of new inhibitors specific to individual plasmodial proteases.'®

The major food vacuole-resident hemoglobin degrading proteases are papain-like cysteine
proteases falcipains, aspartic proteases plasmepsins, the metalloprotease falcilysin, dipeptidyl
aminopeptidase I, and a M1-family alanyl aminopeptidase. PfSUBL is a serine protease
involved in both schizont rupture and erythrocyte reinvasion in the P. falciparum life cycle and
its human enzyme homolog is available. Maslinic acid (MA), a low toxic natural pentacyclic
triterpene has an ability to hinder the maturation from ring to schizont stage which terminate

the release of merozoites and its subsequent invasion.®

Glutathione-dependent B AThinoacids
degradation Hemoglobin (Hb)

(Glutathione)
PDT roteases (plasmepsin o\\\s\w
falcilysin) svo(\°6 :
s ““?w"v“o\e
2 s

Small Peptides

Fe’*—re Fe3*
7 0
SOD 0,

r‘\
&\ 4 H,0;, — PDT
Toxic Heme g 1 2D Degradation
Possible Drug '& Oxidation I
Targets (PDT)
%Hematin
Hemazoin
CYTOPLASM

Figure 5: Food vacuole of intra-erythrocytic malarial parasite as drug target.

b) Targeting hemozoin formation
Formation of hemozoin pigment is the most vital way of detoxification of heme group in P.

falciparum which involves oxidation of heme (Fe(l11)PP1X) to hematin (Fe(l11)PPIX) and then
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conversion of hematin to hemozoin by Histidine-rich protein. Hematin is known to be the target
of chloroquine and other blood schizonticidal like chloroquine, halofantrine, mefloquine,
quinidine, and 8-aminoquiniolines analogues like tafequine as well as bisquinoline analogues,
and previous studies suggest that these drugs act by preventing the detoxification of hematin,
by converting them to a very insoluble microcrystalline dimer of Fe(111)PPIX called hemozoin.

Some study reported that artemisinin binds to heme for antimalarial activity.?

1.7.2 Targeting apicoplast

The apicoplast is a non-photosynthetic plastid which is vital for the malarial parasite which covers

a large number of important metabolic biochemical pathways for the P. falciparum like

biosynthesis of fatty acid, isoprenoid precursors and heme synthesis.?’ However, these pathways

are absent in the human host but present in various types of bacteria, plants, and apicomplexan

parasites. Hence, these parasite-specific metabolic pathways can be considered as an ideal drug

targets.

a)

b)

Targeting fatty acid pathway

Fatty acid biosynthesis pathways of the parasite (FAS I1) and the human host (FAS 1), have
some inherent difference thus making them a promising target for the development of
antimalarials. Various enzymes, which are involved in the synthesis of fatty acids in FASII
pathway as a potential drug target includes acetyl-CoA carboxylase, B-ketoacyl-ACP
reductase, malonyl transacetylase, B-hydroxyacyl-ACP dehydrase, B-hydroxyacyl-ACP
dehydrase -ketoacyl-acyl carrier protein synthase and enoyl-ACP reductase.
Thiolactomycin (a natural antibiotic inhibits fatty acid and mycolic acid synthesis) has
exhibited inhibition of B-ketoacyl-ACP synthases of FAS Il (FabH, FabB/F) in the culture of
P. falciparum. The antimicrobial Triclosan, a specific inhibitor of the enoyl-ACP-reductases
(PfENR or Fabl) of FAS Il has exhibited inhibition of P. falciparum in in-vitro tests as well
as plasmodium infected mice model.

Targeting isoprenoid pathway

Isoprenoid is one of the important requisite for parasite multiplication in human erythrocytes
mainly to P. falciparum. Isoprenoid metabolism is critical to P. falciparum. Plasmodium
synthesizes isoprenoids using 1-deoxy-Dxylulose-5phosphate (DOXP) as precursor which is

not present in humans. This pathway is a non-mevalonate pathway or methyl erythritol
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phosphate biosynthetic pathway which is also found in eubacteria and plants but not in
humans (mavelonate pathway). So it is expressed a good target for antimalarial drugs. Genes
encoding two enzymes in this pathway are DOXP reductoisomerase and DOXP synthase by
P. falciparum. The antibiotic fosmidomycin and its derivative FR900098 inhibited the
activity of recombinant DOXP reductoisomerase which resulted in the inhibition of the
growth of cultured P. falciparum parasites and cured murine malaria.

c) Targeting heme biosynthesis

Malarial parasite synthesizes haem de novo for metabolic use. For that 6-aminolevulinic acid
(ALA) is a main precursor which is synthesized from glycine and succinyl-CoA in animals
using ALA dehydratase enzymes. The P. falciparum imports host ALA dehydratase and
other subsequent enzymes from the host red cell and inhibition of this import process is
another valid target which could lead to the inhibition of heme synthesis and death of the
parasite. Chloroquine, artemisinin and other schizonticidal drugs act by interfering heme
metabolism of the parasite.

1.7.3 Targeting mitochondria

The mitochondrial electron transport chain (ETC) is critical for parasite survival which regenerate
mitochondrial coenzyme Q. It is an important drug target for blocking parasite transmission and
prophylaxis outside the host erythrocytes. Compounds such as, 4(1H)-pyridones, acridones,
acridinediones, myxothiazol, antimycin, and cyanide and 4(1H)-quinolones are reported drugs
targeting ETC.?! Decoquinate was found to be potent, selective, and specific inhibitor of P.

falciparum mitochondrial bcl complex.

1.7.4 Targeting plasmodium sugar transporters

Intra-erythrocytic stages of the parasite are entirely dependent on host glucose for energy. The
main source of ATP production in asexual blood stages is glycolysis, followed by anaerobic
fermentation of pyruvate to lactate, which provides fast ATP production, and is required for the
rapid multiplication of intraerythrocytic parasite. Glucose is delivered to the intera-erythrocytic
parasite by both host and plasmodium sugar transporters. Glucose is first transported to the host
erythrocytes by the glucose transporter GLUTL1 facilitatively, which is highly abundant in the

erythrocyte plasma membrane. There is another P. falciparium Hexose transporter (PFHT), is a
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sodium-independent, saturable, facilitative hexose transporter which shares some of the typical
sugar transporter features with GLUTL. The diference between the above two is; GLUTL is
selective for D-glucose whereas PFHT can transport both D-glucose and D-fructose. Hence,
selective inhibition of PFHT may be possible because mechanistic differences were observed
between GLUT1 and P. Falciparium Hexose transporter (PFHT) in terms of their interaction with
substrates.??

1.7.5 Targeting the Sarcoplasmic/Endoplasmic Reticulum Ca?*ATPase (SERCA)

P-type ATPase also known as E1-E2 ATPases, form a superfamily of cation transporters that
catalyze the selective transport of various ions like H*, Na*, K*, Ca 2* Zn?* and Cu?* across diverse
biological membrane systems and hence maintain steep electrochemical gradients and cell
homeostasis.?® Prominent examples of P-type ATPases are the sodium-potassium pump (Na*, K*-
ATPase), the plasma membrane proton pump (H™-ATPase), the proton-potassium pump (H*, K*-
ATPase), and the calcium pump (Ca?*-ATPase). The SERCA belongs to the family of calcium
pump P-type ATPases. Thapsigargin is a sesquiterpene lactone and the most widely used SERCA
inhibitor that inhibits SERCA in the nanomolar concentration range. It is highly selective because
it does not affect other Ca?*-ATPase. Another compound extracted from traditional Chinese
medicinal herb is Alisol B bind best to the trans-membrane domain at the same site occupied by

thapsigargin.2*

1.7.6 Targeting the lipid metabolic pathways

Infection by plasmodium causes a marked increase in the phospholipid content and a significant
change in the lipid composition of the infected erythrocyte. So, phospholipids (PL) metabolism is
an attractive target for new malaria chemotherapy due to its vital importance to the parasite.?
Phospholipids metabolism is absent in normal mature human erythrocytes but the erythrocyte
phospholipids content increases by as much as 500% after infection, specifically due to the
metabolic machinery of the parasite. Malaria parasites need large amounts of phospholipids.
Hexadecyl-trimethyl-ammonium-bromide was identified as an inhibitor of P. falciparum Choline
kinase PFCK. Bis-quaternary ammonium salts, structurally analogue to the phospholipids
precursor choline, have been shown to be the target of P. falciparum membrane biogenesis by

blocking the biosynthesis of Choline kinase (PC).
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1.7.7 Targeting eukaryotic protein kinases and proteasome

Eukaryotic Protein Kinases and proteasome of malaria parasite are also targeted. Compounds such
as Flavopiridol and olomoucine have exhibited inhibition to protein kinases.?® Proteasome is a
multi-stage target in malaria therapy. Compounds such as lactacystin, epoxomicin, fellutamide B
and designed compounds (MG-132, bortezomib) inhibits proteasome metabolic pathway of

malaria parasite.?’

1.7.8 Targeting aquaporins

Aquaporins (AQPs) are a class of membrane water channels whose primary function is to facilitate
the passive transport of water across the plasma membrane of the cell in response to osmotic
gradients that are created by the active transport of solutes. Since Plasmodium falciparum
aquaglyceroporin (PfAQP) is able to transport other small solutes the parasites are sensitive to
other compounds which are harmless to the human host. The human malarial parasite that resides
within erythrocytes relies on AQP3 and AQP9 in the erythrocyte plasma membrane to obtain
glycerol. Glycerol is important during malarial infection. The malarial parasites incorporate host
plasma glycerol into lipid and membrane during the asexual intraerythrocytic stages of infection.
A single aquaglyceroporin identified in plasmodium has been shown to be the major pathway for
glycerol uptake from the erythrocyte cytoplasm into the parasite. In parasite lacking the
aquaglyceroporin, PfAQP, grows more slowly and is less virulent, indicating that glycerol may be
important for the proliferation of the parasite. Therefore, the inhibition of PfAQP may severely
affect parasite proliferation.

Four classes of AQP-targeted small molecules have been described: cysteine-reactive heavy metal-
based inhibitors (eg. Pcmbs, Au(phen), Silver sulphadiazine); small-molecule scaffolds that are
reported to inhibit water conductance (eg; TEA", NCS168597, Acetazolamide); small molecules
that target the interaction between AQP4 and the NMO autoantibody (eg; Berbamine, Arbidol);
and agents that act as chemical chaperones (eg; Glycerol, Geldanamycin) to facilitate the cellular
processing of NDI-causing AQP2 mutants.?® Development of resistance against a potential AQP
blocker is very limited, this increases the scope.

Due to the resistance of antimalarial drugs worldwide, finding incipient cellular targets and
developing new agents targeting old targets is both imperative aspects in fighting drug-resistant

malaria. In 2009, the Medicines for Malaria Venture (MMV) was established as a not-for-profit
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organization to develop novel approaches to combat malaria by collaborating with industry and
academic. The Malaria Genome Project has provided new scope to the identification and

optimization of new targets.

1.8 Chloroquinoline derivatives as an antimalarial agent

Quinoline and its related derivatives comprise a class of heterocycles, which has been exploited

immensely than any other nucleus for the development of potent antimalarial agents. Among these

those derivatives with amino alkyl substitution at 4™ position and chlorine substitution at 7%

positions are of importance. From various structure—activity relationship (SAR) studies, the

following can be concluded:

a. The 4-amino quinoline nucleus is essential for complexation with hematin,

b. The amino alkyl side chain helps in the accumulation of the drug inside the food vacuole and
assists in the complexation of the quinoline nucleus with the porphyrin system and

c. The presence of chlorine at the 7-position is essential for the inhibition of hemozoin

formation.2®

Some of antimalarial drugs with chloroquinoline moiety are showcased in Figure 6.

CH, I/CH3 OH oH,
Chloroquine Amodlaqume AQ-13
%@ Shie
CH
HN N“T8
V@\ém HN °H3 '
\ Fe CH3
P> S ot
e )
cl N
Ferroquine Naphthoquine Piperaquine

Figure 6: Antimalarial drugs with chloroquinoline moiety.
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1.9 Antimalarial drugs in the pipeline

The portfolio of the antimalarial drugs that are in pipeline arises from the collaboration between
Medicines for Malaria Venture with its partners in both academia and the pharmaceutical industry,
with support from donors mainly include government agencies and philanthropic foundations
(Figure 7,8).
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Figure 7: Antimalarial drugs in pipeline.
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Figure 8: Antimalarial drugs in pipeline.
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2. Basis of work

2.1 Statement of problem

The widespread emergence and dissemination of Plasmodium falciparum (Pf) strains resistant to
conventional antimalarial drugs has intensified the efforts to discover and develop novel,
structurally diverse drugs against multidrug resistant Plasmodium strains. These drugs should be
efficacious against liver-stage and blood-stage infections and active against resistant strains. There
is also a need for next-generation drugs that kill gametocytes as well as the vector stages and thus
can be used to prevent disease transmission. These desirable features would need to be
incorporated into new molecules with longer half-lives for chemoprophylaxis and to provide long-
term protection against reinfection. New, innovative drugs should also be fast acting, be safe for
children and pregnant women, and ideally be amenable to a single-dose administration.

Food vacuole of malaria parasite is an important target for antimalarial drugs. Inhibition of
protease enzymes and conversion of heme to hemozoin are the two ways for interrupting the
parasite life cycle. Hematin or heme is known to be the target for chloroquine and other blood
schizonticidal drugs like halofantrine, mefloquine, quinidine, and 8-aminoquiniolines analogues
like tafequine as well as bisquinoline analogues. These drugs act by preventing the detoxification
of hematin, by converting them to a very insoluble microcrystalline dimer of Fe(l11)PPIX called
hemozoin and thus stopping survival of the parasite.

Chloroquine is a typical fast acting schizonticidal drug. It has all the structural requirements as an
antimalarial agent targeting food vacuole of parasite. Its size, presence of 4-aminoquinoline
nucleus, amino alkyl sidechain and chlorine substitution are the key features for its activity. A
schematic diagram of mechanism of action of chloroquinoline derivatives is discussed in Figure
9. In the context of our interest in developing novel antimalarials agents, we envisioned to develop
a new class of 4-aminoquinoline hybrids which might exhibit potent antimalarial activity
addressing the same target as that of chloroquine. Several classes of triazole tethered 4-
aminoquinoline derivatives have been shown to possess excellent antiplasmodial activities.
However, there have been no report on the utility of triazoline derivatives as antimalarial agents,
presumably due to the difficulty in accessing them. Keeping this in mind, we thought to explore
the possibility of combining triazoline with a known pharmacophore such as 4-aminoquinoline to

develop new antimalarial agents. Our efforts in this direction culminated in the synthesis of a
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unique class of trifluoromethyltriazoline-4-aminoquinoline hybrids, and this work forms the
subject matter of this thesis.
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Figure 9: Mechanism of action of chloroquinoline analogues.

2.2 Retrosynthetic approach towards trifluoromethyltriazoline-4-
aminoquinoline hybrids
The retrosynthetic pathway for the synthesis of trifluoromethyltriazoline-4-aminoquinoline

derivatives is outlined in Figure 10. The target triazoline moiety can be obtained by [3+2]
cycloaddition reaction of in situ generated imine with trifluorodiazoethane. The required imine is
formed by condensation reaction of an aldehyde with N1-(7-chloroquinolin-4-yl) diamine. The
retrosynthetic pathway for the synthesis of NZ1-(7-chloroquinolin-4-yl) diamine follows the

nucleophilic aromatic substitution of 4,7-dichloroquinoline by a diaminoalkane.

4 )
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Figure 10: Retrosynthetic approach towards trifluoromethyltriazoline-4-aminoquinoline hybrids.

The results of our efforts in this direction are presented in the following pages.
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3. Results and discussion

The strategy adopted for the trifluoromethyl triazoline derivative of chloroquinoline synthesis
includes two steps:

1. Synthesis of N1-(7-chloroquinolin-4-yl) diamine.

2. Formation of trifluoromethyl triazoline derivative of chloroquinoline by a domino-Schiff base

formation/[3+2] cycloaddition reaction sequence.

3.1 Synthesis of N1-(7-chloroquinolin-4-yl) diamines

The synthesis of N1-(7-chloroquinolin-4-yl) diamine is shown in Scheme 1. Commercially
available 4,7-dichloro quinoline 1 and terminal diaminoalkanes 2 were treated under neat
conditions to furnish N1-(7-chloroquinolin-4-yl) diamine derivatives 3. The strategy was applied

to terminal diaminoalkanes containing two and three carbon chains as shown below.

NH
cl HN Y 2
\ o
/@\)j + HN-~piNHz __4h 140°C m
7
cl N neat cl N7
1 2 3
N~ N2 HN” " "NH,
m m
7
Cl N/ Cl N
3a 3b

Scheme 1: Synthesis of N1-(7-chloroquinolin-4-yl) diamines.

3.2 Synthesis of trifluoromethyl triazoline derivatives of chloroquinoline

The synthesis of trifluoromethyl triazoline derivatives of chloroquinoline is shown in Scheme 2a
and Scheme 2b. The protocol involves two steps; initially the N*-(7-chloroquinolin-4-yl)propane-
1,3-diamine 3 and aldehyde 4 undergo condensation to form imine intermediate. The in situ formed
imine subsequently undergoes a silver catalyzed [3+2] cycloaddition reaction with
trifluorodiazoethane 5 to afford trifluoromethyltriazoline derivatives of chloroquinoline. The
strategy was applied to a series of aldehydes (Scheme 2a). Pleasingly, aldehydes bearing

electronically varied substituents underwent the reaction efficiently to afford the corresponding
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Scheme 2a: Synthesis of trifluoromethyl triazoline derivatives of N-(7-chloroquinolin-4-

yl)propane-1,3-diamine.
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hybrid derivatives in excellent yields. In addition to that, the reaction was compatible for
medicinally relevant heteroaryl aldehydes such as thiophene, indole, furan, and quinoline. Notably,
aldehydes bearing synthetic handles such as boronic acid and hydroxyl groups underwent the
reaction, offering a suitable platform for further derivatization.

Besides this, a triazoline derivative using N*-(7-chloroquinolin-4-yl)ethane-1,2-diamine 3b and
benzaldehyde 4a was also synthesized employing the similar reaction conditions (Scheme 2b).

CF

HN/\/NHz CHO Pth ’
CF3 N\ ’/N

/I M Ag,CO3 (5 mol%) A~""N

+ + > HN

S N
cl N MeOH, 25 °C, 12 h P
3b 4a 5 < 7.84%
cl N

Scheme 2b: Synthesis of trifluoromethyl triazoline derivatives of N*-(7-chloroquinolin-4-
yl)ethane-1,2-diamine.

3.3 Biological screening
The synthesized compounds have been submitted to CBRS, CDRI and the biological evaluation

for antimalarial activity is currently underway.
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4. Experimental data

4.1 General information

Unless otherwise specified, all reactions were carried out under air atmosphere in oven-dried round
bottom flasks. The reactions were monitored by TLC visualized by UV (254 nm and 365 nm)
and/or with iodine. Column chromatography was performed on 100-200 mesh silica gels using the
gradient system ethyl acetate/hexane and methanol/dichloromethane. NMR data were recorded at
Bruker AV 400 MHz in CDClIz and DMSO-ds using as internal standards. The residual CDCls3
signal for *H NMR (8 = 7.26 ppm) and for *C (& = 77.16 ppm). The signal of DMSO-ds for H
NMR (& = 2.50 ppm) and for *C (§ = 39.50 ppm). Coupling constants are given in hertz (Hz) and
the classical abbreviations are used to describe the signal multiplicities. Melting points were
measured with a Bichi B-540 and are uncorrected. Mass spectra were obtained using Q-TOF mass
spectrometer. All commercially available reagents were used as received. Trifluorodiazoethane

were prepared by following a literature procedure B34,

Note: CF3CHN2 must be handled with care, and the diazo solutions must be stored at temperatures
<0°C.

4.2 General reaction procedures

4.2.1 General procedure for the synthesis of N1-(7-chloroquinolin-4-yl) diamines

To an oven-dried round bottom flask, diaminoalkane 2 (4.5 equiv) and 4,7-dichloroquinoline 1 (1
equiv) were added and the resulting reaction mixture was allowed to stir at reflux for 4 h. After
the completion of the reaction, as indicated by the TLC, the reaction mixture was cooled down to
room temperature. The reaction mixture was extracted using DCM and 1N NaOH, and the organic
layer.was washed with saturated brine. Finally, the organic layer was dried over Na,SO4 and

evaporated under reduced pressure to give the product 3.

NH
cl HNT MO, 2
O NH., 4h, 140 °C O
+ 2 S T Yy
/©\)j H N, neat Z
cl N cl N
1 2 3

Scheme 1: Synthesis of N1-(7-chloroquinolin-4-yl) diamines.

School of Chemical Sciences, MG University, Kottayam 25



Experimental data

4.2.2 General procedure for the synthesis of trifluoromethyltriazoline-4-
aminoquinoline hybrids

To an oven-dried 25 mL round bottom flask was added aldehyde 4 (0.5 mmol, 1.0 equiv), amine
3 (0.6 mmol, 1.2 equiv) and methanol (2.0 mL), and was allowed to stir for 10 minutes. The
reaction mixture was subsequently charged with trifluorodiazoethane 5 stock solution in toluene
(1.5 mmol, 3.0 equiv) and Ag2COs (5 mol%). Then, the resulting reaction mixture was stirred for
12 h at 25 °C. After the completion of reaction, as indicated by TLC, the solvent was evaporated
under reduced pressure. The residue was purified using column chromatography (100-200 mesh
silica gel) using acetone/dichloromethane as the eluent to afford the desired product 6.

( )
R CF,
HN" L NH, N> \N
y JOL (CF3 Ag,CO; (5 mol%) cl N
| + ROH * N > hn
N 2 MeOH, 25 °C, 12 h
ci N N\ NH
3 4 5 N 6
|\ J

Scheme 1: Synthesis of trifluoromethyltriazoline-4-aminoquinoline hybrids.
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5. Characterization data of compounds 6a-60 and 7

Compound  6a:  7-chloro-N-(3-(5-phenyl-4-(trifluoromethyl)-4,5-dihydro-1H-1,2,3-
triazol-1-yl)propyl)quinolin-4-amine
Following the general procedure, treatment of benzaldehyde
Qﬂ\\ch 4a (53.0 mg, 0.50 mmol), N*-(7-chloroquinolin-4-yl)propane-
1,3-diamine 3a (141.0 mg, 0.60 mmol) and Ag.COz (7.0 mg,
0.025 mmol) with trifluorodiazoethane stock solution 5 in

/ A\ Cz1H1gCIF3N5 toluene (1.87 mL, 1.50 mmol) in methanol (2 mL) at 25 °C for

MW: 433.86
12 h followed by column chromatography afforded the product

6a (202.0 mg, 93%). Major isomer: brownish viscous compound, R
(acetone/dichloromethane: 10/90) = 0.20. ¥C NMR (100 MHz, § ppm/CDCls): 152.0 (CH),
149.5 (C), 149.2 (C), 137.1 (C), 135.1 (C), 129.7 (CH), 129.7 (CH), 129.4 (CH), 128.8 (CH),
127.0 (CH), 127.0 (CH), 125.5 (CH), 123.6 (g, Jc-r = 276.9 Hz, C), 121.2 (CH), 117.3 (C),
99.1 (CH), 85.3 (q, Jc.r = 28.4 Hz, CH), 62.5 (d, J = 2.2 Hz, CH), 45.7 (CH>), 40.3 (CH>), 26.6
(CH2). 'H NMR (400 MHz, 5 ppm/CDCls): 8.46 (t, J = 5.2 Hz, 1H), 7.93 (t, J = 2.6 Hz, 1H),
7.60-7.56 (m, 1H), 7.37-7.35 (m, 1H), 7.32 (dd, J = 8.8, 2.8 Hz, 1H), 7.19-7.16 (m, 1H), 6.32-
6.30 (M, 1H), 5.51 (s, 1H), 4.83-4.74 (m, 1H), 4.47 (d, J = 10.4 Hz, 1H), 3.73-3.66 (M, 1H),
3.55-3.34 (m, 3H), 2.14-2.01 (m, 2H). **F NMR (376 MHz & ppm/CDCl3): -73.1 (s). ESMS
for C21H20CIF3Ns*: caled. [M+H]*: 434.86, found: 434.30.

Compound  6b:  N-(3-(5-(4-bromophenyl)-4-(trifluoromethyl)-4,5-dihydro-1H-1,2,3-

triazol-1-yl)propyl)-7-chloroquinolin-4-amine

Following the general procedure, treatment of 4-
bromobenzaldehyde 4b (93.0 mg, 0.50 mmol), N-(7-
chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60
mmol) and Ag.COz (7.0 mg, 0.025 mmol) with

trifluorodiazoethane stock solution 5 in toluene (1.87 mL, 1.50

Br

CF3

C21H1BBrCIF3N5 mmol) in methanol (2 mL) at 25 °C for 12 h followed by
MW: 512.76

column chromatography afforded the product 6b (205.0 mg,
80%). Major isomer: pale yellow solid compound, Mp 118 °C. Rt (Acetone/dichloromethane:
20/80) = 0.20. *C NMR (100 MHz, § ppm/CDClz): 151.6 (CH), 149.8 (C), 148.8 (C), 136.1
(C), 135.3 (C), 132.9 (CH), 132.9 (CH), 128.7 (CH), 128.7 (CH), 128.4 (CH), 125.7 (CH),
123.5 (C), 123.5(q, Jc-F = 276.7 Hz, C), 121.4 (CH), 117.2 (C), 99.1 (CH), 85.3 (q, Jc-Fr = 28.4
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Hz, CH), 62.0 (CH), 45.8 (CHz), 40.3 (CHy), 26.6 (CHz). *H NMR (400 MHz, & ppm/CDCls):
8.48 (d, J =5.6 Hz, 1H), 7.91 (d, J = 2.4 Hz, 1H), 7.62 (d, J = 9.2 Hz, 1H), 7.49-7.46 (m, 2H),
7.32 (dd, J= 9.2, 2.4 Hz, 1H), 7.06-7.03 (m, 2H), 6.34 (d, J = 5.6 Hz, 1H), 5.45 (s, 1H), 4.74-
4.70 (m, 1H), 4.43 (d, J = 10.8 Hz, 1H), 3.71-3.64 (m, 1H), 3.52-3.35 (m, 3H), 2.13-2.05 (m,
2H). F NMR (376 MHz § ppm/CDCls): -73.0 (s). ESMS for C21H19BrCIFsNs*: calcd.
[M+H]*: 513.76, found: 514.20.

Compound 6c: 7-chloro-N-(3-(5-(thiophen-3-yl)-4-(trifluoromethyl)-4,5-dihydro-1H-
1,2,3-triazol-1-yl)propyl)quinolin-4-amine

S Following the general procedure, treatment of thiophene-3-

(—@_\\CFs carboxaldehyde 4c¢c (56.0 mg, 0.50 mmol), N!-(7-

\ chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60

cl N mmol) and Ag.COs (7.0 mg, 0.025 mmol) with
N NH trifluorodiazoethane stock solution 3 in toluene (1.87 mL, 1.50
N___J CigHi7CIFsNsS | mmol) in methanol (2 mL) at 25 °C for 12 h followed by
IV 495,99 column chromatography afforded the product 6¢ (209.0 mg,

95%). Major isomer: brownish viscous compound. Rs (Acetone/dichloromethane: 30/70) =
0.20. ¥C NMR (100 MHz, § ppm/CDCls): 151.5 (CH), 150.0 (C), 148.7 (C), 137.5 (C), 135.1
(C), 128.5 (CH), 128.1 (CH), 125.4 (CH), 125.0 (CH), 124.1 (CH), 123.6 (q, Jc.r = 277.1 Hz,
C), 121.7(CH), 117.3 (C), 99.0 (CH), 83.9 (q, Jc-r = 28.4 Hz, CH), 57.9 (CH), 45.6 (CH_), 40.3
(CH2), 26.7 (CH). *H NMR (400 MHz, § ppm/CDCls): 8.43 (d, J =5.2 Hz, 1H), 7.88 (d, J =
2.0 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.34 (dd, J = 5.2, 3.2 Hz, 1H), 7.26 (dd, J = 8.8, 2,0 Hz,
1H), 7.20 (dd, J = 3.2, 1.2 Hz, 1H), 6.86 (dd, J = 5.2, 1.6 Hz, 1H), 6.31 (d, J = 5.6 Hz, 1H),
5.69 (t, J=5.6 Hz, 1H), 4.79-4.71 (m, 1H), 4.62 (d, J = 10.4 Hz, 1H), 3.70-3.63 (m, 1H), 3.52-
3.46 (m, 1H), 3.42-3.30 (m, 2H), 2.10-2.00 (m, 2H). **F NMR (376 MHz & ppm/CDCls): -73.1
(s). ESMS for C19H18CIF3NsS™: calcd. [M+H]™: 440.89, found: 440.20.

Compound 6d: N-(3-((4R,5S)-5-(1H-indol-3-yl)-4-(trifluoromethyl)-4,5-dihydro-1H-
1,2,3-triazol-1-yl)propyl)-7-chloroquinolin-4-amine

Following the general procedure, treatment of indole-3-carboxaldehyde 4d (73.0 mg, 0.50
mmol), N!-(7-chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60 mmol) and
Ag>CO3 (7.0 mg, 0.025 mmol) with trifluorodiazoethane stock solution 3 in toluene (1.87 mL,
1.50 mmol) in methanol (2 mL) at 25 °C for 12 h followed by column chromatography

afforded the product 6d (95.0 mg, 40%). Major isomer: brownish viscous compound. Rt
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(Acetone/ dichloromethane: 20/80) = 0.20. *C NMR (100

H
N/ MHz, § ppm/DMSO-dg): 151.9 (CH), 150.7 (C), 148.9 (C),
Q—gﬁﬁh 137.3 (C), 134.1 (C), 127.5 (CH), 126.1 (CH), 124.9 (q, Jc-F

o N, N = 277.9 Hz, C), 124.8 (C), 124.6 (d, J = 8.1 Hz, CH), 124.6
(d, J = 8.1 Hz, CH), 122.2(CH), 119.9 (CH), 118.4 (CH),

X~ NH _

T o 117.8 (C), 112.7 (CH), 110.3 (C), 99.0 (CH), 80.8 (q, Jc-r =

MW: 472.90 | 27.2 Hz, CH), 56.3 (CH), 45.1 (CH), 30.1 (CH>), 26.9 (CH2).
'H NMR (400 MHz, & ppm/DMSO-ds): 11.29 (s, 1H), 8.35 (d, J = 4.8 Hz, 1H), 8.20 (d, J =
9.2 Hz, 1H), 7.78 (s, 1H),7.56 (s, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.30 (s, 1H), 7.20-7.11 (m, 2H),
6.99 (t, J = 7.2 Hz, 1H), 6.26 (d, J = 5.2 Hz, 1H), 5.25 (t, J = 8.6 Hz, 1H), 5.13 (d, J = 9.6 Hz,
1H), 3.67-3.35 (m, 4H), 1.97-1.93 (m, 2H). °F NMR (376 MHz & ppm/CDCls): -67.7 (s).
ESMS for Co3H21CIF3Ng*: caled. [M+H]*: 473.90, found: 473.30.

Compound 6e: 7-chloro-N-(3-((4R,5R)-5-(furan-2-yl)-4-(trifluoromethyl)-4,5-dihydro-
1H-1,2,3-triazol-1-yl)propyl)quinolin-4-amine

Following the general procedure, treatment of furfural 4e
~ 70

_ oF (48.0 mg, 0.50 mmol), N*-(7-chloroquinolin-4-yl)propane-
~F3

1,3-diamine 3a (141.0 mg, 0.60 mmol) and Ag.COs3 (7.0 mg,
N. _N
Cl N 0.025 mmol) with trifluorodiazoethane stock solution 3 in
\_NH toluene (1.87 mL, 1.50 mmol) in methanol (2 mL) at 25 °C
/

N___J CioHy7CIFsNsO | for 12 h followed by column chromatography afforded the
MW: 423.82

product 6e (127.0 mg, 60%). Major isomer: white solid
compound, Mp 100 °C. R (Acetone/ dichloromethane: 20/80) = 0.20. *C NMR (100 MHz, &
ppm/CDCls): 151.7 (CH), 149.7 (d, J = 3.3 Hz, C), 148.9 (C), 147.9 (C), 144.0 (CH), 135.0
(©), 128.4 (d, J = 3.4 Hz, CH), 125.4 (CH), 123.4 (q, Jc-r = 276.9 Hz, C), 121.3(CH), 117.2
(C), 111.0 (CH), 110.3(CH), 99.0 (CH), 81.1 (9, Jc-r = 28.8 Hz, CH), 55.8 (d, J = 2.4 Hz, CH),
45.6 (CHy), 40.2 (CHy), 26.7 (CH2). *H NMR (400 MHz, § ppm/CDCls): 8.47 (d, J = 5.2 Hz,
1H), 7.90 (d, J = 2.4 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.35 (dd, J = 2.0, 0.8 Hz, 1H), 7.29 (dd,
J=9.2,2.4 Hz, 1H), 6.36 (dd, J = 3.6, 0.8 Hz, 1H), 6.32 (dd, J = 3.6, 2.0 Hz, 2H), 5.47 (t, J =
5.6 Hz, 1H), 5.06-4.99 (m, 1H), 4.57 (d, J = 10.0 Hz, 1H), 3.64-3.58 (m, 2H), 3.41-3.34 (m,
2H), 2.07-1.95 (m, 2H). *F NMR (376 MHz & ppm/CDCls): -73.0 (s). ESMS for
C19H18CIF3NsO*: caled. [M+H]*: 424.82, found: 424.30.
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Compound

6f:  7-chloro-N-(3-((4R,5S5)-5-(naphthalen-2-yl)-4-(trifluoromethyl)-4,5-
dihydro-1H-1,2,3-triazol-1-yl)propyl)quinolin-4-amine

Following the general procedure, treatment of 2-

OO naphthaldehyde 4f (78.0 mg, 0.50 mmol), N.-(7-

LFs chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60

cl NN mmol) and Ag.CO; (7.0 mg, 0.025 mmol) with
trifluorodiazoethane stock solution 3 in toluene (1.87 mL,

N/ /\ NHCGW?L(;;F%? 1.50 mmol) in methanol (2 mL) at 25 °C for 12 h followed
B by column chromatography afforded the product 6f (220.0

mg, 91%). Major isomer: pale yellow solid compound, Mp 120 °C. Rs
dichloromethane: 20/80) = 0.20. 13C NMR (100 MHz, § ppm/CDCls): 151.5 (CH), 149.9 (C),
148.7 (C), 135.0 (C), 134.0 (C), 133.4 (C), 133.1 (C), 129.9 (CH), 127.9-127.8 (m, CH), 127.9-
127.8 (m, CH), 127.9-127.8 (m, CH), 127.1 (d, J =5.7 Hz, CH), 125.2 (CH), 125.2 (CH), 125.2
(CH), 123.7 (q, Jc.F = 277.7 Hz, C), 123.2 (CH), 121.7 (CH), 117.3 (C), 98.9 (CH), 84.8 (q, Jc-
F = 28.2 Hz, CH), 62.8 (CH), 45.7 (CH,), 40.1 (CH>), 26.6 (CH,). *H NMR (400 MHz, &
ppm/CDCls): 8.35 (d, J = 5.2 Hz, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.80-7.77 (m, 2H), 7.74-7.71
(m, 1H), 7.65 (d, J = 1.6 Hz, 1H), 7.51-7.48 (m, 2H), 7.44 (d, J = 9.2 Hz, 1H), 7.18 (dd, J =
8.4, 1.6 Hz, 1H), 7.06 (dd, J = 8.8, 2.0 Hz, 1H), 6.22 (d, J = 5.6 Hz, 1H), 5.67 (t, J = 5.6 Hz,
1H), 4.91-4.83 (m, 1H), 4.63 (d, J = 10.4 Hz, 1H), 3.70-3.63 (m, 1H), 3.56-3.50 (m, 1H), 3.41-
3.29 (m, 2H), 2.10-1.98 (m, 2H). °F NMR (376 MHz & ppm/CDCls): -72.9 (s). ESMS for
C2sH22CIFsNs*: caled. [M+H]*: 484.92, found: 484.30.

(Acetone/

Compound 69: (4-((4R,5S)-1-(3-((7-chloroquinolin-4-yl)amino) propyl)-4-
(trifluoromethyl)-4,5-dihydro-1H-1,2,3-triazol-5-yl)phenyl)boronic acid

(HO),B Following the general procedure, treatment of 4-

carboxyphenylboronic acid 4g (75.0 mg, 0.50 mmol), N!-(7-

CFs | chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60

¢l N\N/,N mmol) and Ag.COz (7.0 mg, 0.025 mmol) with

trifluorodiazoethane stock solution 3 in toluene (1.87 mL, 1.50

N/ P g:HzoBC|F3N502 mmol) in methanol (2 mL) at 25 °C for 12 h followed by

MW:477.68 | column chromatography afforded the product 6g (115.0 mg,

48%). Major isomer: yellow solid compound, Mp 144 °C. R¢ (Acetone/ dichloromethane:
20/80) = 0.20. **C NMR (100 MHz,  ppm/CDCls): 151.1 (d, J = 8.4 Hz, C), 149.7 (d,J=7.7
Hz, CH), 146.6 (d, J =7.9 Hz, C), 137.1 (C), 136.2 (d, J = 2.8 Hz, C), 129.7 (CH), 129.7 (CH),
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129.4 (CH), 127.0 (CH), 127.0 (CH), 126.2 (d, J = 11.6 Hz, CH), 126.0 (CH), 123.7 (q, Jc.r =
277.0 Hz, C), 122.2 (C), 116.9 (C), 98.8 (CH), 85.1 (q, Jc-r = 28.4 Hz, CH), 62.4 (CH), 45.7
(CH2), 40.5 (CHy), 26.5 (CH2). *H NMR (400 MHz, 5 ppm/CDCls): 8.40 (d, J = 5.6 Hz, 1H),
7.85 (s, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.40-7.35 (m, 3H), 7.31 (dd, J = 9.2, 2.0 Hz, 1H), 7.21-
7.16 (m, 2H), 6.36 (d, J = 6.0 Hz, 1H), 5.83 (s, 1H), 4.83-4.74 (m, 1H), 4.51 (d, J = 10.4 Hz,
1H), 3.75-3.68 (m, 1H), 3.56-3.36 (m, 4H), 2.18-2.05 (m, 2H). *F NMR (376 MHz &
ppm/CDCls): -73.1 (s). ESMS for C21H2:BCIF3Ns0,™: caled. [M+H-B(OH),]": 434.86, found:
434.30.

Compound 6h: 4-((4R,5S)-1-(3-((7-chloroquinolin-4-yl)amino)propyl)-4-
(trifluoromethyl)-4,5-dihydro-1H-1,2,3-triazol-5-yl)-2-(trifluoromethoxy)phenol

Ho  OCF, Following the general procedure, treatment of 4-hydroxy-3-
(trifluoromethoxy)benzaldehyde 4h (103.0 mg, 0.50 mmol),

CF3 N*-(7-chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg,
o N‘N"N 0.60 mmol) and Ag.COz (7.0 mg, 0.025 mmol) with
trifluorodiazoethane stock solution 3 in toluene (1.87 mL, 1.50

N '\ICIZszCIFeNst mmol) in methanol (2 mL) at 25 °C for 12 h followed by

N
=~ MW: 533.86 column chromatography afforded the product 6h (152.0 mg,

57%). Major isomer: yellow solid compound, Mp 135 °C. Rt (Acetone/ dichloromethane:
30/70) = 0.20. °C NMR (100 MHz, § ppm/CDCls): 151.2 (C), 150.6 (C), 150.5 (CH), 147.5
(©), 137.5 (C), 135.8 (C), 127.7 (CH), 126.9 (CH), 126.5 (CH),125.8 (CH), 123.8 (0, Jc-F =
271.7 Hz, C), 121.7(CH), 121.3 (CH),119.1 (CH), 117.0 (C), 98.7 (CH), 84.8 (q, Jcr = 22.4
Hz, CH), 62.0 (CH), 45.9 (CH>), 40.3 (CH>), 26.6 (CH,). *H NMR (400 MHz, & ppm/CDCls3):
8.31(d, J=4.4 Hz, 1H), 7.81 (s, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.29-7.26 (m, 1H), 6.98 (s, 1H),
6.91 (d, J = 6.8 Hz, 1H), 6.87-6.85 (m, 1H), 6.26 (d, J = 4.8 Hz, 1H), 4.72-4.67 (m, 1H), 4.38
(d, J = 8.4 Hz, 1H), 3.63-3.58 (m, 1H), 3.41-3.30 (m, 5H), 2.08-2.00 (m, 2H). *F NMR (376
MHz & ppm/CDCls): -58.0 (s), -73.0 (5). ESMS for C22H19CIFsNs0-": caled. [M+H]*: 534.86,
found: 534.30.

Compound 6i: 7-chloro-N-(3-((4R,5S)-5-(2-chloroquinolin-3-yl)-4-(trifluoromethyl)-4,5-
dihydro-1H-1,2,3-triazol-1-yl)propyl)quinolin-4-amine

Following the general procedure, treatment of 2-chloro-3-quinolinecarboxaldehyde 4i (96.0
mg, 0.50 mmol), N!-(7-chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60 mmol)
and Ag>COz3 (7.0 mg, 0.025 mmol) with trifluorodiazoethane stock solution 3 in toluene (1.87

School of Chemical Sciences, MG University, Kottayam 31



Characterization data

mL, 1.50 mmol) in methanol (2 mL) at 25 °C for 12 h

W cl followed by column chromatography afforded the product 6i
LFs (187.0 mg, 72%). Major isomer: white solid compound, Mp
cl NN 160 °C. R (Acetone/ dichloromethane: 20/80) = 0.20. **C

NMR (100 MHz, § ppm/CDCls): 151.5 (CH), 149.8 (C), 148.6
T /\ NI-(|324H19CI2F3N6 (C), 1483 (C), 147.8 (C), 135.4 (C), 132.0 (CH), 128.5 (CH),

MW:519.35 | 128.4 (CH), 128.3 (CH), 128.3 (CH), 128.3 (CH), 127.6 (CH),
127.0 (CH), 125.7 (CH), 123.4 (q, Jc.r = 277.8 Hz, C), 121.2(CH), 117.1 (C), 99.1 (CH), 84.4
(9, Jo-r = 29.5 Hz, CH), 59.7 (CH), 45.8 (CH>), 40.3 (CH>), 26.8 (CH,). *H NMR (400 MHz,
8 ppm/CDCls): 8.43 (d, J = 5.6 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.93 (s, 1H), 7.88 (d, J = 2.4
Hz, 1H), 7.77 (t, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.58-7.48 (m, 2H), 7.23 (dd, J =
9.2, 2.4 Hz, 1H), 6.32 (d, J = 5.6 Hz, 1H), 5.42 (s, 1H), 5.13-5.06 (m, 2H), 3.86-3.79 (m, 1H),
3.59-3.53 (m, 1H), 3.48-3.38 (m, 2H), 2.20-2.09 (m, 2H). °F NMR (376 MHz & ppm/CDCls):
-73.0 (s). ESMS for C24H20Cl2F3Ng*: caled. [M+H]*: 520.35, found: 519.30.

Compound 6j: 7-chloro-N-(3-((4R,5S)-5-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-4-
(trifluoromethyl)-4,5-dihydro-1H-1,2,3-triazol-1-yl)propyl)quinolin-4-amine

Following the general procedure, treatment of 1,4-
<; benzodioxan-6-carboxaldehyde 4j (82.0 mg, 0.50 mmol), N*-
(7-chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg,
0.60 mmol) and Ag.COz (7.0 mg, 0.025 mmol) with
trifluorodiazoethane stock solution 3 in toluene (1.87 mL, 1.50

C23H21CIF3 0, | mmol) in methanol (2 mL) at 25 °C for 12 h followed by
MW: 491.90

column chromatography afforded the product 6j (150.0 mg,

95%). Major isomer: pale yellow solid compound, Mp 136 °C. Rf (Acetone/
dichloromethane: 20/80) = 0.20. 3C NMR (100 MHz, & ppm/CDCls): 152.0 (CH), 149.5 (C),
149.1 (C), 144.5 (C), 144.4 (C), 135.2 (C), 130.0 (C), 128.8 (CH), 125.6 (CH), 125.1 (CH),
123.7 (9, JcFr =276.5 Hz, C), 121.1(CH), 120.0 (CH), 118.5 (CH), 117.3 (C), 115.9 (CH), 99.2
(CH), 85.1 (q, Jc-F = 27.9 Hz, CH), 64.4 (CH>), 64.4 (CH>), 62.1 (CH), 45.5 (CH?2), 40.3 (CH>),
26.7 (CH2). *H NMR (400 MHz, § ppm/CDCls): 8.52 (d, J = 5.6 Hz, 1H), 7.95 (d, J = 2.0 Hz,
1H), 7.55 (d, J = 9.2 Hz, 1H), 7.35 (dd, J = 8.8, 2.0 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.69 (d,
J = 2.0 Hz, 1H), 6.65 (dd, J = 8.0, 2.0 Hz, 1H), 6.36 (d, J = 5.6 Hz, 1H), 5.13 (t, J = 5.6 Hz,
1H), 4.79-4.70 (m, 1H), 4.36 (d, J = 10.4 Hz, 1H), 4.25-4.18 (m, 4H), 3.71-3.64 (m, 1H), 3.54-
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3.35 (m, 3H), 2.11-2.04 (m, 2H). *F NMR (376 MHz & ppm/CDCls): -73.1 (s). ESMS for
Ca3H22CIF3Ns02™: caled. [M+H]™: 492.90, found: 492.30.

Compound 6k: 7-chloro-N-(3-((4R,5S)-5-(4-nitrophenyl)-4-(trifluoromethyl)-4,5-
dihydro-1H-1,2,3-triazol-1-yl)propyl)quinolin-4-amine

O,N Following the general procedure, treatment of 4-
nitrobenzaldehyde 4k (76.0 mg, 0.50 mmol), N!-(7-

LFs chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60

cl NN mmol) and Ag.COz (7.0 mg, 0.025 mmol) with

trifluorodiazoethane stock solution 3 in toluene (1.87 mL, 1.50

NH
N/ N CyH1sCIFsNgO, | Mmol) in methanol (2 mL) at 25 °C for 12 h followed by

MW: 478.86

column chromatography afforded the product 6k (134.0 mg,

56%). Major isomer: orange solid compound, Mp 140 °C. Rs (Acetone/ dichloromethane:
20/80) = 0.20. C NMR (100 MHz, § ppm/CDCls): 151.9 (CH), 149.6 (C), 149.0 (C), 148.5
(C), 144.1 (C), 135.3 (C), 128.7 (CH), 128.0 (CH), 128.0 (CH), 125.7 (CH), 124.9 (CH), 124.9
(CH), 123.3 (g, Jc.r = 277.0 Hz, C), 121.1(CH), 117.3 (C), 99.1 (CH), 85.7 (q, Jc.r = 28.7 Hz,
CH), 61.8 (CH), 46.3 (CH>), 40.4 (CH>), 26.7 (CH2). *H NMR (400 MHz, § ppm/CDCls): 8.48
(d, J =5.2 Hz, 1H), 8.19-8.16 (m, 2H), 7.91 (d, J = 2.0 Hz, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.36-
7.34 (m, 2H), 7.30 (dd, J = 8.8, 2.0 Hz, 1H), 6.35 (d, J = 5.2 Hz, 1H), 5.36 (t, J = 5.6 Hz, 1H),
4.80-4.72 (m, 1H), 4.57 (d, J = 10.8 Hz, 1H), 3.79-3.72 (m, 1H), 3.55-3.36 (M, 3H), 2.14-2.09
(m, 2H). F NMR (376 MHz & ppm/CDCls): -72.8 (s). ESMS for C,1H19CIF3NgO2*: calcd.
[M+H]*: 479.86, found: 479.30.

Compound 6l: 7-chloro-N-(3-((4R,5S)-5-cyclopropyl-4-(trifluoromethyl)-4,5-dihydro-
1H-1,2,3-triazol-1-yl)propyl)quinolin-4-amine

Following the general procedure, treatment of
CF, cyclopropanecarboxaldehyde 4l (35.0 mg, 0.50 mmol), N*-(7-
NN chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60
¢l K// N mmol) and Ag.COz (7.0 mg, 0.025 mmol) with
\%/NH trifluorodiazoethane stock solution 3 in toluene (1.87 mL, 1.50
N CisHieCIFsNs | mmol) in methanol (2 mL) at 25 °C for 12 h followed by
MW: 397.83

column chromatography afforded the product 61 (60.0 mg,

30%). Major isomer: white solid compound, Mp 108 °C. Rt (Acetone/dichloromethane:
20/80) = 0.20. °C NMR (100 MHz, § ppm/CDCls): 150.7 (CH), 148.9 (C), 147.8 (C), 134.3
(C), 127.5 (CH), 124.7 (CH), 122.6 (q, Jc-r = 276.8 Hz, C), 120.3(CH), 116.3 (C), 98.1 (CH),
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80.9 (q, Jc-F = 28.5 Hz, CH), 62.1 (CH), 44.6 (CHz), 39.5 (CH>), 25.9 (CH>), 12.9 (CH>»), 4.3
(CH_y), 0.01 (CH). *H NMR (400 MHz, & ppm/CDCls): 8.50 (d, J = 5.6 Hz, 1H), 7.93 (d, J =
2.4 Hz, 1H), 7.70 (d, J = 9.2 Hz, 1H), 7.35 (dd, J = 9.2, 2.4 Hz, 1H), 6.40 (d, J = 5.2 Hz, 1H),
5.46 (s, 1H), 4.72-4.64 (m, 1H), 3.93-3.88 (m, 1H), 3.80-3.73 (m, 1H), 3.52-3.40 (m, 2H), 2.80
(t, J = 9.2 Hz, 1H), 2.20-2.17 (m, 2H), 0.76-0.71 (m, 1H), 0.64-0.57 (m, 1H), 0.44-0.38 (m,
1H), 0.30-0.24 (m, 1H). F NMR (376 MHz & ppm/CDCls): -73.6 (s). ESMS for
C18H20CIF3Ns": caled. [M+H]*: 398.83, found: 398.30.

Compound 6m: N-(3-((4R,5S)-5-([1,1'-biphenyl]-4-yl)-4-(trifluoromethyl)-4,5-dihydro-
1H-1,2,3-triazol-1-yl)propyl)-7-chloroquinolin-4-amine

Following the general procedure, treatment of biphenyl-4-

O carboxaldehyde 4m (91.0 mg, 0.50 mmol), N-(7-
O chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg,
CFs 0.60 mmol) and Ag.COsz (7.0 mg, 0.025 mmol) with
cl N\Nf,N trifluorodiazoethane stock solution 3 in toluene (1.87 mL,
1.50 mmol) in methanol (2 mL) at 25 °C for 12 h followed

N NH  Ca7H23CIF3Ns
N/ MW: 509.96 by column chromatography afforded the product 6m

=

(230.0 mg, 90%). Major isomer: pale yellow solid

compound, Mp 128 °C. R¢ (Acetone/ dichloromethane: 10/90) = 0.20. **C NMR (100 MHz, &
ppm/CDCls): 151.7 (CH), 149.7 (C), 148.9 (C), 142.5 (C), 139.8 (C), 135.9 (C), 135.2 (C),
129.1 (CH), 129.1 (CH), 128.5 (CH), 128.3 (CH), 128.3 (CH), 128.1 (CH), 127.1 (CH), 127.1
(CH), 125.6 (CH), 124.0 (9, Jc-Fr = 278.3 Hz, C), 121.2(CH), 117.2 (C), 99.1 (CH), 85.3 (9, Jc-
F = 22.8 Hz, CH), 62.3 (CH), 45.7 (CHy), 40.3 (CH2), 26.7 (CH,). *H NMR (400 MHz, &
ppm/CDCls): 8.48 (d, J =5.2 Hz, 1H), 7.92 (d, J = 2.4 Hz, 1H), 7.59-7.51 (m, 5H), 7.45 (t, J =
7.6 Hz, 2H), 7.38 (t, J = 7.2 Hz, 1H), 7.24-7.23 (m, 1H), 6.35 (d, J = 5.2 Hz, 1H), 5.30 (t, J =
5.6 Hz, 1H), 4.87-4.79 (m, 1H), 4.53 (d, J = 10.4 Hz, 1H), 3.77-3.70 (m, 1H), 3.60-3.36 (m,
3H), 2.25-2.20 (m, 2H). F NMR (376 MHz & ppm/CDCls): -73.0 (s). ESMS for
Co7H24CIF3Ns™: caled. [M+H]*: 510.96, found: 510.30.

Compound 6n: 7-chloro-N-(3-((4R,5S)-5-(4-(dimethylamino)phenyl)-4-(trifluoromethyl)-
4,5-dihydro-1H-1,2,3-triazol-1-yl)propyl)quinolin-4-amine

Following the general procedure, treatment of 4-(dimethylamino)benzaldehyde 4n (75.0 mg,
0.50 mmol), N*-(7-chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg, 0.60 mmol) and
Ag>CO3 (7.0 mg, 0.025 mmol) with trifluorodiazoethane stock solution 3 in toluene (1.87 mL,
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Cl

N

/

X NH Cy3H,4CIF3Ng

N _

MW: 476.93

1.50 mmol) in methanol (2 mL) at 25 °C for 12 h followed

Me
Me-N by column chromatography afforded the product 6n (143.0
mg, 60%). Major isomer: brownish viscous compound. R¢
CF
<% 1 (Acetone/ dichloromethane: 20/80) = 0.20. *C NMR (100
N. _N

MHz, § ppm/CDCls): 151.0 (CH), 150.8 (C), 150.3 (C),
148.0 (C), 135.4 (C), 128.0 (CH), 128.0 (CH), 125.5 (CH),
123.8 (g, Jor = 276.9 Hz, C), 123.5 (CH), 122.0 (CH), 117.1

(C), TIZ.7(CH), TIZ.7(CH), 111.9 (C), 98.9 (CH), 84.5 (q, Jo-r = 28.1 Hz, CH), 62.3 (CH),
45.2 (CH,), 40.3 (CHs), 40.3 (CHa), 40.2 (CH,), 26.6 (CHz). H NMR (400 MHz, &
pPPM/CDCl): 8.44 (d, J = 3.6 Hz, 1H), 7.92 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 12.8 Hz, 1H), 7.30-
7.27 (m, 1H), 7.01 (dd, J = 8.4, 1.6 Hz, 2H), 6.62 (dd, J = 8.4, 1.6 Hz, 2H), 6.32 (d, J = 2.8 Hz,
1H), 5.58 (s, 1H), 4.78-4.72 (m, 1H), 4.39 (d, J = 10.4 Hz, 1H), 3.54-3.41 (m, 4H), 2.93-2.92
(m, 6H), 2.14-2.02 (m, 2H). ®F NMR (376 MHz & ppm/CDCls): -73.2 (s). ESMS for
Ca3H2sCIF3Ng™: caled. [M+H]*: 477.93, found: 477.30.

7-chloro-N-(3-((4R,5S)-5-(4-isopropylphenyl)-4-(trifluoromethyl)-4,5-
dihydro-1H-1,2,3-triazol-1-yl)propyl)quinolin-4-amine

Compound 60:

of 4-
isopropylbenzaldehyde 40 (74.0 mg, 0.50 mmol), N!-(7-

Following the general procedure, treatment

Me
Me

cF, chloroquinolin-4-yl)propane-1,3-diamine 3a (141.0 mg,
\ 0.60 mmol) and Ag.COs; (7.0 mg, 0.025 mmol) with
trifluorodiazoethane stock solution 3 in toluene (1.87 mL,
1.50 mmol) in methanol (2 mL) at 25 °C for 12 h followed
by column chromatography afforded the product 6o (217.0
mg, 91%). Major isomer: pale yellow solid compound, Mp 113 °C. R¢ (Acetone/
dichloromethane: 10/90) = 0.20. 3C NMR (100 MHz, & ppm/CDCls): 151.9 (CH), 150.3 (C),
149.7 (C), 149.1 (C), 135.0 (C), 134.2 (C), 128.6 (CH), 127.7 (CH), 127.7 (CH), 126.9 (CH),
126.9 (CH), 125.4 (CH), 123.7 (q, Jc.r = 276.9 Hz, C), 121.4 (CH), 117.3 (C), 99.0 (CH), 85.0
(9, JcF = 28.1 Hz, CH), 62.1 (CH), 45.5 (CH.), 40.2 (CH>), 33.8 (CH), 26.6 (CH), 23.8 (d, J
= 5.3 Hz, CHjs), 23.8 (d, J = 5.3 Hz, CH3). *H NMR (400 MHz, § ppm/CDCls): 8.48 (dd, J =
3.6, 2.0 Hz, 1H), 7.92 (d, J = 2.4 Hz, 1H), 7.61-7.57 (m, 1H), 7.32-7.27 (m, 1H), 7.16 (d, J =
7.6 Hz, 2H), 7.07 (dd, J = 8.4, 2.0 Hz, 2H), 6.34 (d, J = 4.8 Hz, 1H), 5.34 (s, 1H), 4.80-4.72
(m, 1H), 4.46 (d, J = 10.4 Hz, 1H), 3.73-3.66 (m, 1H), 3.50-3.34 (m, 3H), 2.91-2.84 (m, 1H)

N NH Co4H25CIF3N5
MW: 475.94
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2.12-2.02 (m, 2H), 1.21 (d, J = 6.8 Hz, 6H). °F NMR (376 MHz & ppm/CDCls): -73.1 (s).
ESMS for Co4H26CIFsNs™: calcd. [M+H]*: 476.94, found: 477.30.

Compound 7: 7-chloro-N-(2-((4R,5S)-5-phenyl-4-(trifluoromethyl)-4,5-dihydro-1H-
1,2,3-triazol-1-yl)ethyl)quinolin-4-amine

Following the general procedure, treatment of benzaldehyde
Q_\\\ca 4a (53.0 mg, 0.50 mmol), N*- (7-chloroquinolin-4-yl)ethane-

N. _N 1,2-diamine 3b (133.0 mg, 0.60 mmol) and Ag>COs (7.0 mg,
HNI " 0.025 mmol) with trifluorodiazoethane stock solution 3 in
CI/@%} toluene (1.87 mL, 1.50 mmol) in methanol (2 mL) at 25 °C
N /" CagHi7CIF N for 12 h followed by column chromatography afforded the

MW: 419.84

product 7 (176.0 mg, 84%). Major isomer: pale yellow solid
compound, Mp 125 °C. R (Acetone/ dichloromethane: 20/80) = 0.20. 3C NMR (100 MHz, &
ppm/CDCl3): 151.8 (CH), 149.1 (C), 149.0 (C), 136.6 (C), 135.1 (C), 129.6 (CH), 129.6 (CH),
129.4 (CH), 128.7 (CH), 126.9 (CH), 126.9 (CH), 125.7 (CH), 123.4 (q, Jc.r = 276.8 Hz, C),
121.1 (CH), 117.2 (C), 99.0 (CH), 85.3 (q, Jc-r = 28.4 Hz, CH), 62.7 (CH), 46.5 (CH_), 41.3
(CH2). 'H NMR (400 MHz, & ppm/CDCls): 8.36 (d, J = 5.2 Hz, 1H), 7.85 (s, 1H), 7.51 (d, J =
9.2 Hz, 1H), 7.26-7.18 (m, 4H), 7.06 (d, J = 7.2 Hz, 2H), 6.16 (d, J = 5.2 Hz, 1H), 5.45 (s, 1H),
4.75-4.66 (m, 1H), 4.41 (d, J = 10.8 Hz, 1H), 3.78-3.69 (m, 2H), 3.59-3.42 (m, 2H). °F NMR
(376 MHz & ppm/CDCls): -73.0 (s). ESMS for C20H18CIFsNs": calcd. [M+H]*: 420.84, found:
420.30.
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Figure 10: 1H NMR spectrum of 6a
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Figure 16: 1H NMR spectrum of 6¢
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Figure 25: 1H NMR spectrum of 6f
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Figure 34: 1H NMR spectrum of 6i

G9L9T—

ETA Y

presr—
089'65—

EPE9L
owvhnv
8LV LL
897 v8
mmv.vmv.

col'e6—

SEVLLL
021213
m:«ﬁ/
015zl

ﬁmww_%
2852~
66282} \
86821

QNO.NQW
zsesel

09L°Lbh \
rrEBrl~\
18580} N
iy
€715 1

hexane
(@)

~N
z=Z

z .
o I/I/ o
o \, IN [a]
o/ TN\ Q
\ N
L T
=
o
s <2

J

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
f1 (ppm)

30

Figure 35: 13C NMR spectrum of 6i

49

School of Chemical Sciences, MG University, Kottayam



Spectral data

200€L-—

991'89-—

e ~
z=Z

z .
o |/|/ o
o - [a]
o 74 / m / \N m
e
L~ T
=
©
s ®

N J

L

T

-73

-72

-75 -76 -77 -78 -79 -80 -81

-74

f1 (ppm)

-71

-70

Figure 36: 19F NMR spectrum og 6i

)
P
z o
= 8
4
Ny 8
lo} ©x
J S
o) o
— o
o <
J

90T

Feot

oz
004

10
E101

660

o0

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 15 1.0 0.5
f1 (ppm)

9.0

Figure 37: 1H NMR spectrum of 6j

50

School of Chemical Sciences, MG University, Kottayam



Spectral data

FOOON TR OOONOTI
OPB0r OLES-rOoR®EH @2 o mem -~ ©w o @
88<clBT <3unoiTER @ ThoRDY as o @ @
NOgTY LOBRVCHONO = b s3] = o 2
HI¥IIIT Oeaax22E? 3 vy Mo zo v 9 @
vvvvvvvvvvvvvv 3 RN PR ¥ 5 &
SV Y ASISSNY Vv N N (I

~

CF,
N
\
N
0 f
HN

(o)
z
< |
Cl N
6j
100 MHz/CDCl;
\. J

I

e i L

AT T bt T s PP e

T T T T T T T T T T T T T

T T T T T T T T T T
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10
f1 (ppm)

Figure 38: 13C NMR spectrum og 6j

CF;
N
\
N'N
(o)
N\ J)
HN
2
N
Cl N
6j
376 MHz/CDCl;
|\ J
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

f1 (ppm)

Figure 39: 19F NMR spectrum of 6j

School of Chemical Sciences, MG University, Kottayam 51



Spectral data

400 MHz/CDCl;

Cl

hexane

)

A

Fooz

HV ooe

Erol

=00}

Feou

Foot

ol

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

f1 (ppm)

Figure 40: 1H NMR spectrum of 6k

YTL9T—

88E°0p—

riesr—

6ES 19—

[A=RTA
09 :NW
BiviL

88768
9.6'G8~

£98'687
05 Sm\

LpVe6—

5T L —
S
et
20967 _M
soceer/

85T°GEL—

aryL—

2058~
280617
z656v17
05 151"

100 MHz/CDCl;
J

Cl
.

140 130 120 110 100 90 80 70 60 50 40 30 20 10
f1 (ppm)

150

Figure 41: 13C NMR spectrum of 6k

52

School of Chemical Sciences, MG University, Kottayam



Spectral data

T
-210

w0t
oot
0l

H\ODN

T T
190 -200
@ ©
< &
=) o

T

180
2
3
o

T
-170

=0T

T
160
~
8
S

T-o0b

T
-150

T
-140

Froz

850
I-850

T T
-120  -130

T
-110

Foot

T
-100
f1 (ppm)

T
-90

Feso

-80

06LTL—

T
-70

EIEE - 660
8I16°€
ZEGE

T
-60

Figure 42: 19F NMR spectrum of 6k
%5

T
-50

o0t

—= oo

T
-30

N
J/

o0t

T
40
oo
=3
=&
© ©
T ——
1

N

J
.
5
'\g

T
20
-
=
~

Iooh

HN
z
S
N
10
CLis
HN
z
S
N

400 MHz/CDCl,

O,N
cl

6k
376 MHz/CDCl,
6l

-
Cl

N

10
-
N

53

1.0

1.5

2.0

2.5

3.0

3.5

8.5 8.0 7.5 7.0 6.5 6.0 5.5 fl%g]pm) 4.5 4.0
Figure 43: 1H NMR spectrum of 6l

9.0

9.5

School of Chemical Sciences, MG University, Kottayam



Spectral data

[y= 8 PEBEI =
o M ~—©ndo ~ D—ODOOMm ® 0 o - < ©
© o M ITRO- NN © ©OPOR~O®F B v O = r~ o3
o P =] o MO~ —© O 0 0 R @ b=
O T T I RIRTRE © - -0 0 ®© o T o ] o N 5
- PR L > ®o® o~ © T ® N - < S
SNV I SN 3 | [ (I
( )\
CF;
N
1\
N
N
HN
/I
N
Cl N
6l
100 MHz/CDCI;
\. J
1 ! |
| |
|
i |
! !
l[ I | |
|| l L
f
T T T T T T T T T T T T T T T T T T T T T T T
210 200 190 180 170 160 150 140 130 120 110 100 90 80 60 50 40 30 20 10 0 10 2

f1 (ppm)

Figure 44: 13C NMR spectrum of 6l

-73.624

N
( CF,
N
\\
N
N
HN/l)
Z
3
cl N
6l
376 MHz/CDCI;
\ y,
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

f1 (ppm)

Figure 45: 19F NMR spectrum of 6l

School of Chemical Sciences, MG University, Kottayam

54



Spectral data

SYZT
0SE'e

Cl

400 MHz/CDCl;

.

J/

Froz

Rei
R

H\no.v

Foot
Foou

Faso

Fuo

60

1.0 0.5 0.0

1.5

2.0

25

3.0

3.5

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0
f1 (ppm)

9.5

1H NMR spectrum of 6m

Figure 46

Lgez—

20—

869°Gh—

lzeza—

906'9L
09l NFW
EWiL
198'v8
9 w.mm‘/.
nmm.mmw
v2ase

£80'66—

2z L0
6L 121
usTTL
1L YT
VeI
0z1iz)
165 221
80821
008z 1
2Z5 821
soves/
VT 5L~
a055eL
p1gBEL—
esp Tyl —

S5EBYL~_
WLBPL—
ver s

whet

Ph

Cl

100 MHz/CDCl;

J

.

-10

200 190 180 170 160 150 140 130 120 110 . %UO ) 90 80 70 60 50 40 30 20 10
1 (ppm

210

13C NMR spectrum of 6m

Figure 47

55

School of Chemical Sciences, MG University, Kottayam



Spectral data

986'TL—

4 \
z=Z
z o
s M =~ 8
N\ /A~ .9
EN
S T
=
- [}
& s &
N J

20 30 -40 -50 60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210
f1 (ppm)

-10

10

Figure 48: 19F NMR spectrum of 6m

e N
z=Z
=z =
s M = 8
z z
I\ 54
C N
© T
=
Zz. o
7 ] P=
J = o
_ = )

Fuz

=019

Foev

00}

Evve

Wmmo

=00t
ooz
61
501
Fes0

=Ll

=L

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 35 3.0 25 2.0 1.5 1.0 0.5 0.0
f1 (ppm)

9.5

Figure 49: 1H NMR spectrum of 6n
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Conclusion

7. Conclusion

Malaria remains as the deadliest infectious disease across Africa, Asia and America so far.
Antimalarial drug discovery is of paramount importance as part of eradication of this parasitic
disease. It has been proved that food vacuole of P. falciparum consists of its major metabolic
pathways, digestion of hemoglobin that provide pool of amino acid for parasite growth and
detoxification of heme by various methods in different sites of the target. All these routes are
promising targets for parasitic inhibition. By considering this fact, a novel class of antimalarials
compounds, trifluoromethyltriazoline-4-aminoquinoline hybrids, have been synthesized which
might target food vacuole of malaria parasite. The synthesis of the requisite compounds was
carried by a silver catalyzed [3+2] cycloaddition reaction of trifluorodiazoethane with imines
formed after condensation of N!-(7-chloroquinolin-4-yl)propane-1,3-diamine or N!- (7-
chloroquinolin-4-yl)ethane-1,2-diamine with aldehydes. The biological screening of these

compounds as antimalarial agent is currently ongoing.
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